ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Swaminathan Vaidyanathan
Nuclear Technology | Volume 206 | Number 10 | October 2020 | Pages 1538-1552
Technical Paper | doi.org/10.1080/00295450.2019.1706377
Articles are hosted by Taylor and Francis Online.
A fuel rod design consisting of a bimetallic cladding tube of thorium metal bonded to a zirconium alloy and containing seed fuel in the interior space is proposed for thorium utilization in pressurized water reactors. The design mitigates the severe thermal penalty that arises in radial microheterogeneous designs when thorium is present as an oxide. The level of thorium loading has an important effect on the achievable discharge exposure as too high a loading results in a large reactivity penalty that is not compensated by rapid enough 233U breeding. In the bimetallic cladding design, the level of thorium loading could be adjusted by varying the thorium metal thickness, and analyses are presented to evaluate optimal levels of thorium loading. Results of cases for higher levels of initial seed loading are presented with a view to extending exposure and reducing the number of discharged assemblies. Liquid metal bonding the seed fuel–cladding gap is preferable as it reduces the seed fuel temperature and at the same time provides more room for fuel swelling. Helium bonding the gap is also possible with a seed fuel modified by an inert matrix. Both approaches need data for fuel thermal modeling, swelling, and fission gas release at high burnup not currently available.