ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Bradley Heath, Colby Jensen
Nuclear Technology | Volume 206 | Number 9 | September 2020 | Pages 1436-1448
Technical Paper | doi.org/10.1080/00295450.2020.1725370
Articles are hosted by Taylor and Francis Online.
The Transient Reactor Test (TREAT) Facility is a graphite reactor capable of delivering tailored power histories to unique experiment designs. Frequently, these experiments are designed to simulate a specific reactor transient to perform detailed studies of reactor fuel behavior. The reactor core is uniquely designed to allow a limited energy release and resulting peak fuel cladding temperature such that thermal feedback mechanisms shut the reactor power transient down in a passive manner, thus maximizing the lifetime of the reactor fuel cladding. The reactor is air cooled; however, the cooling system does not serve a safety function. The air cooling is typically used for four main functions: (1) accelerate cooling of the reactor core to ambient temperature post transient operations, (2) remove activated gases from the reactor cavity, (3) perform heat balance for power calibration, and (4) maintain criticality on extended steady-state runs or shaped transients. With the restart of the reactor, these systems are now fully operational and have been exercised during the past year for the first time in more than 20 years. This paper summarizes the thermal properties of the core and the thermal-hydraulic design of the TREAT Facility and presents selected results of temperature profiles resulting from operation. Conservatively estimated maximum transient energy and steady-state power is provided.