ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Jin-Hwa Yang, Hwang Bae, Sung-Uk Ryu, Byong Guk Jeon, Sung-Jae Yi, Hyun-Sik Park
Nuclear Technology | Volume 206 | Number 9 | September 2020 | Pages 1421-1435
Technical Paper | doi.org/10.1080/00295450.2020.1775450
Articles are hosted by Taylor and Francis Online.
Even for small modular reactors (SMRs) with all large pipes removed, a small-break loss-of-coolant accident (SBLOCA) is an important design-basis accident (DBA). Experimental simulation of the SBLOCA scenario is essential before a prototype reactor is realized. The system-integrated modular advanced reactor (SMART) is one of the SMRs developed by the Korea Atomic Energy Research Institute. An integral test loop, SMART-ITL, was also constructed to carry out several types of integral thermal-hydraulic effects tests for the prototype reactor. The SMART-ITL was designed with a preserved height, 1/7th diameter, and 1/49th area, and volume-scaling ratios. Two types of passive safety systems were equipped in the SMART-ITL: a passive safety injection system (PSIS) and a passive residual heat removal system (PRHRS). The PSIS was designed to refill the coolant in the reactor coolant system (RCS) for 72 h after an accident. Under accident conditions the PRHRS prevents overheating and overpressurization of the RCS using two-phase natural circulation. The SBLOCA on the passive safety injection line is a significant DBA that should be validated for differences in break size. In this paper, the effects of two different break sizes, 2 and 7/32 in., were analyzed in order to study the effect of the maximum and minimum mass and energy loss of the RCS. In order to simulate a clear difference between maximum and minimum mass and energy loss of the RCS, heat removal by the PRHRS was performed in the maximum break size (2-in.) accident, and heat removal by the PRHRS was not conducted in the minimum break size (7/32-in.) accident. The difference in mass and energy loss of the RCS will have a significant impact on the operation of the automatic depressurization system. Using the two extreme accident simulations, it was possible to confirm the difference in accident progression caused by the difference in break size and the characteristics of the PSIS.