ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
ANS continues to expand its certificate offerings
It’s almost been a full year since the American Nuclear Society held its inaugural section of Nuclear 101, a comprehensive certificate course on the basics of the nuclear field. Offered at the 2024 ANS Winter Conference and Expo, that first sold-out course marked a massive milestone in the Society’s expanding work in professional development and certification.
Chan Soo Kim, Byung Ha Park, Eung Seon Kim, Min Hwan Kim
Nuclear Technology | Volume 206 | Number 9 | September 2020 | Pages 1397-1408
Technical Paper | doi.org/10.1080/00295450.2020.1735228
Articles are hosted by Taylor and Francis Online.
The Korea Atomic Energy Research Institute (KAERI) has developed the Core Reliable Optimization and thermofluid Network Analysis (CORONA) code for core thermofluid analysis of a prismatic high-temperature gas-cooled reactor (HTGR). KAERI performed scaled-down standard fuel block (SFB) heated tests at a helium experimental loop to validate the CORONA code. The scaled-down SFB was designed based on the core thermofluid design for a 350-MW(thermal) HTGR. The reference test condition was selected to maintain the Reynolds number of the coolant channels and the bypass gaps. The test section had seven coolant holes and 12 fuel holes considering KAERI’s helium loop circulator design. The material of the fuel block was Al2O3, selected to simulate the low thermal conductivity of the irradiated graphite at the high-temperature condition. The bypass gap structure was made of stainless steel 304 to minimize gap size deformation at the heated condition. This paper presents a comparison between the test results and the CORONA analysis results. The test parameter was the nitrogen flow velocity (3.6 to 6.0 kg/min) and constant heated condition.