ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Chan Soo Kim, Byung Ha Park, Eung Seon Kim, Min Hwan Kim
Nuclear Technology | Volume 206 | Number 9 | September 2020 | Pages 1397-1408
Technical Paper | doi.org/10.1080/00295450.2020.1735228
Articles are hosted by Taylor and Francis Online.
The Korea Atomic Energy Research Institute (KAERI) has developed the Core Reliable Optimization and thermofluid Network Analysis (CORONA) code for core thermofluid analysis of a prismatic high-temperature gas-cooled reactor (HTGR). KAERI performed scaled-down standard fuel block (SFB) heated tests at a helium experimental loop to validate the CORONA code. The scaled-down SFB was designed based on the core thermofluid design for a 350-MW(thermal) HTGR. The reference test condition was selected to maintain the Reynolds number of the coolant channels and the bypass gaps. The test section had seven coolant holes and 12 fuel holes considering KAERI’s helium loop circulator design. The material of the fuel block was Al2O3, selected to simulate the low thermal conductivity of the irradiated graphite at the high-temperature condition. The bypass gap structure was made of stainless steel 304 to minimize gap size deformation at the heated condition. This paper presents a comparison between the test results and the CORONA analysis results. The test parameter was the nitrogen flow velocity (3.6 to 6.0 kg/min) and constant heated condition.