ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
G. D. Latimer, W. R. Marcum, W. F. Jones
Nuclear Technology | Volume 206 | Number 9 | September 2020 | Pages 1374-1384
Technical Paper | doi.org/10.1080/00295450.2020.1712158
Articles are hosted by Taylor and Francis Online.
In this study a series of experiments were performed subjecting surrogate nuclear fuel rods to high-pressure transients to induce fuel dispersion representative of the expected conditions of a fuel rod during a hypothetical loss-of-coolant accident. Experiments were conducted on like-for-like pressurized water reactor geometries in both a single-rod and rod-bundle configuration. In the rod-bundle configuration, a matched index of refraction techniques was employed to provide optical access to the bundle internals and to view the surrogate fuel dispersion event. Both configurations used small lead pellets as a surrogate fuel and were observed with a high-speed camera to capture the transient on a resolved timescale. For the single-rod experiments, the test rod was subjected to pressure transients at 4.0, 8.0, and 12.0 MPa multiple times, and for the rod-bundle experiments, the rod was subjected to 8.0 MPa transients in order to compare mechanical behavior against the single-rod test at 8.0 MPa. For both configurations, the results showed highly variable behavior in both the quantity of fuel dispersed and the mean displacement relative to the burst rod origin, likely due to statistical variations in the internal fuel stack orientation. Measurements of the rod plenum internal pressure showed no discernible difference in depressurization rates at a given pressure, indicating the likelihood that the mass flow rate is limited by the valve orifice in the current experimental configuration. The bundle tests also showed that a 5 × 5 array appears to be too small to capture the full spatial distribution of dispersed fuel, thus future tests will employ a larger bundle size and particle collection technique.