ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Scott J. Weber, Etienne M. Mullin
Nuclear Technology | Volume 206 | Number 9 | September 2020 | Pages 1351-1360
Technical Paper | doi.org/10.1080/00295450.2020.1756160
Articles are hosted by Taylor and Francis Online.
During a severe accident in a nuclear reactor, there are a number of phenomenological events that can present a challenge to containment integrity. These include the generation and combustion of hydrogen, energetic fuel-coolant interactions, thermal attack of fission product barriers, core-concrete interactions, direct containment heating, and gradual overpressurization. The advanced design of the NuScale small modular reactor (SMR) has resulted in the reduced likelihood and severity of severe accident challenges to containment. This paper discusses the features of the NuScale design that reduce the likelihood of occurrence of these severe accident phenomena and also discusses the ability of containment to survive in the unlikely event that they do occur. The impact of severe accident phenomena for the NuScale design is compared and contrasted against other advanced light water reactors (ALWRs), such as the AP1000 reactor and the Economic Simplified Boiling Water Reactor (ESBWR), as well as the existing fleet, using information from publicly available documents.