ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Katy Huff on the impact of loosening radiation regulations
Katy Huff, former assistant secretary of nuclear energy at the Department of Energy, recently wrote an op-ed that was published in Scientific American.
In the piece, Huff, who is an ANS member and an associate professor in the Department of Nuclear, Plasma, and Radiological Engineering at the University of Illinois–Urbana-Champaign, argues that weakening Nuclear Regulatory Commission radiation regulations without new research-based evidence will fail to speed up nuclear energy development and could have negative consequences.
Elia Merzari, Paul Fischer, Misun Min, Stefan Kerkemeier, Aleksandr Obabko, Dillon Shaver, Haomin Yuan, Yiqi Yu, Javier Martinez, Landon Brockmeyer, Lambert Fick, Giacomo Busco, Alper Yildiz, Yassin Hassan
Nuclear Technology | Volume 206 | Number 9 | September 2020 | Pages 1308-1324
Technical Paper | doi.org/10.1080/00295450.2020.1748557
Articles are hosted by Taylor and Francis Online.
At the beginning of the last decade, Petascale supercomputers (i.e., computers capable of more than 1 petaFLOP) emerged. Now, at the dawn of exascale supercomputing, we provide a review of recent landmark simulations of portions of reactor components with turbulence-resolving techniques that this computational power has made possible. In fact, these simulations have provided invaluable insight into flow dynamics, which is difficult or often impossible to obtain with experiments alone. We focus on simulations performed with the spectral element method, as this method has emerged as a powerful tool to deliver massively parallel calculations at high fidelity by using large eddy simulation or direct numerical simulation. We also limit this paper to constant-property incompressible flow of a Newtonian fluid in the absence of other body or external forces, although the method is by no means limited to this class of flows. We briefly review the fundamentals of the method and the reasons it is compelling for the simulation of nuclear engineering flows. We review in detail a series of Petascale simulations, including the simulations of helical coil steam generators, fuel assemblies, and pebble beds. Even with Petascale computing, however, limitations for nuclear modeling and simulation tools remain. In particular, the size and scope of turbulence-resolving simulations are still limited by computing power and resolution requirements, which scale with the Reynolds number. In the final part of this paper, we discuss the future of the field, including recent advancements in emerging architectures such as GPU-based supercomputers, which are expected to power the next generation of high-performance computers.