ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Christopher G. Morrison
Nuclear Technology | Volume 206 | Number 8 | August 2020 | Pages 1224-1239
Technical Paper | doi.org/10.1080/00295450.2020.1738173
Articles are hosted by Taylor and Francis Online.
The specific mass (or mass per unit power) is a fundamental performance metric in space power systems. For surface power, a low specific mass reduces launch costs and lander size. For nuclear electric propulsion, a low specific mass enables fast transit within the solar system. Studies on specific mass have typically focused on point designs and have not adequately explored the design space and scaling of specific mass. This research explores the design space for radiatively cooled closed nuclear Brayton systems. Specifically, the key innovation in this work is to determine the scaling according to the maximum temperature capability and total power system power. When these two factors are analyzed together, the resulting analyses show a clear scaling for specific mass.