ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Christopher G. Morrison
Nuclear Technology | Volume 206 | Number 8 | August 2020 | Pages 1224-1239
Technical Paper | doi.org/10.1080/00295450.2020.1738173
Articles are hosted by Taylor and Francis Online.
The specific mass (or mass per unit power) is a fundamental performance metric in space power systems. For surface power, a low specific mass reduces launch costs and lander size. For nuclear electric propulsion, a low specific mass enables fast transit within the solar system. Studies on specific mass have typically focused on point designs and have not adequately explored the design space and scaling of specific mass. This research explores the design space for radiatively cooled closed nuclear Brayton systems. Specifically, the key innovation in this work is to determine the scaling according to the maximum temperature capability and total power system power. When these two factors are analyzed together, the resulting analyses show a clear scaling for specific mass.