ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Andrew Denig, Michael Eades
Nuclear Technology | Volume 206 | Number 8 | August 2020 | Pages 1171-1181
Technical Paper | doi.org/10.1080/00295450.2020.1719798
Articles are hosted by Taylor and Francis Online.
Two methodologies for performing decay heat analysis with Monte Carlo simulations were developed and implemented on a representative nuclear thermal propulsion (NTP) system. This paper presents the underlying theory, discusses the methodology, and states the key results. This work investigated the importance of utilizing a time-dependent Q-value for fission in NTP systems due to their short burn time. Two approaches for deriving the Q-value were taken: one based on deconvolving the fission rate from the reactor power to yield the rate of fission energy deposition, and the other based on the convergence of the fission product decay power during a long burn. The fission product decay power method is hypothesized to be the more accurate representation of an NTP system as it captures more of the underlying physics occurring during burnup, such as fission product transmutation. The calculated Q-values were employed to derive decay power profiles that were compared to the current state-of-the-art NTP decay power model. According to these new models, it is shown that the cooling requirements for decay heat removal calculated with the state-of-the-art model differ from the developed methods by as much as 23.3%. There exists a need to experimentally validate, and by extension improve, the proposed methods to better understand the nature of decay heat production in NTP systems.