ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Quality is key: Investing in advanced nuclear research for tomorrow’s grid
As the energy sector faces mounting pressure to grow at an unprecedented pace while maintaining reliability and affordability, nuclear technology remains an essential component of the long-term solution. Southern Company stands out among U.S. utilities for its proactive role in shaping these next-generation systems—not just as a future customer, but as a hands-on innovator.
Andrew Denig, Michael Eades
Nuclear Technology | Volume 206 | Number 8 | August 2020 | Pages 1171-1181
Technical Paper | doi.org/10.1080/00295450.2020.1719798
Articles are hosted by Taylor and Francis Online.
Two methodologies for performing decay heat analysis with Monte Carlo simulations were developed and implemented on a representative nuclear thermal propulsion (NTP) system. This paper presents the underlying theory, discusses the methodology, and states the key results. This work investigated the importance of utilizing a time-dependent Q-value for fission in NTP systems due to their short burn time. Two approaches for deriving the Q-value were taken: one based on deconvolving the fission rate from the reactor power to yield the rate of fission energy deposition, and the other based on the convergence of the fission product decay power during a long burn. The fission product decay power method is hypothesized to be the more accurate representation of an NTP system as it captures more of the underlying physics occurring during burnup, such as fission product transmutation. The calculated Q-values were employed to derive decay power profiles that were compared to the current state-of-the-art NTP decay power model. According to these new models, it is shown that the cooling requirements for decay heat removal calculated with the state-of-the-art model differ from the developed methods by as much as 23.3%. There exists a need to experimentally validate, and by extension improve, the proposed methods to better understand the nature of decay heat production in NTP systems.