ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Yu Ji, ZeGuang Li, Jun Sun, ErSheng You, MingGang Lang, Lei Shi
Nuclear Technology | Volume 206 | Number 8 | August 2020 | Pages 1155-1170
Technical Paper | doi.org/10.1080/00295450.2020.1760703
Articles are hosted by Taylor and Francis Online.
Nuclear thermal propulsion (NTP) could be an advanced technology to facilitate a new and excellent rocket engine that would at least double the performance of the best conventional chemical rocket engines. NTP has been under development for several decades and was selected as the leading candidate technique for the manned mission to Mars, as suggested in Design Reference Architecture 5.0. During development, many concepts have been proposed, designed, and tested. Among which, the particle bed reactor (PBR) is the one of highest performance, and its compact and lightweight features make it ideal for space applications. In this paper, the thermal-hydraulic characteristics of a PBR are mainly investigated through two studies. The first study is to evaluate whether the principles derived from the PBR of uniform heat release could be applied in the cases of a nonuniform heating profile. The second study is to analyze the effects of some aspects, including porosity of the hot frit and cold frit, power shift, inlet temperature of the coolant on the internal flow, and heat transfer processes in the PBR of a nonuniform heat release. These findings may provide technical support for the subsequent design and optimization of the PBR.