ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Daniel K. Bond, Braden Goddard, Robert C. Singleterry, Jr., Sama Bilbao y León
Nuclear Technology | Volume 206 | Number 8 | August 2020 | Pages 1120-1139
Technical Paper | doi.org/10.1080/00295450.2019.1681221
Articles are hosted by Taylor and Francis Online.
Materials have a primary purpose in the design of space vehicles, such as fuels, walls, racks, windows, etc. Additionally, each will also effect space radiation protection. The shielding capabilities of 39 materials and nine layering configurations are evaluated for deep space travel in terms of whole-body effective dose equivalent (ED). Polymer and composite materials are also evaluated in terms of . It is clear that a “magic” material or layering configuration is not possible; however, polymers and composites should be used instead of metals if they can serve their primary purpose. Polyethylene is shown to be the best feasible material from this material sample. Thermal neutron absorbers 6Li and 10B do not have a significant effect on ED as homogeneous shields or in layering configurations. Alloying of materials such as aluminum for strengthening purposes does not increase ED. Tanking liquid hydrogen within aluminum does significantly reduce ED when compared to aluminum. Ultimately, a space vehicle is a system of systems and radiation protection must be one of them.