ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
IAEA report confirms safety of discharged Fukushima water
An International Atomic Energy Agency task force has confirmed that the discharge of treated water from Japan’s Fukushima Daiichi nuclear power plant is proceeding in line with international safety standards. The task force’s findings were published in the agency’s fourth report since Tokyo Electric Power Company began discharging Fukushima’s treated and diluted water in August 2023.
More information can be found on the IAEA’s Fukushima Daiichi ALPS Treated Water Discharge web page.
Daniel K. Bond, Braden Goddard, Robert C. Singleterry, Jr., Sama Bilbao y León
Nuclear Technology | Volume 206 | Number 8 | August 2020 | Pages 1120-1139
Technical Paper | doi.org/10.1080/00295450.2019.1681221
Articles are hosted by Taylor and Francis Online.
Materials have a primary purpose in the design of space vehicles, such as fuels, walls, racks, windows, etc. Additionally, each will also effect space radiation protection. The shielding capabilities of 39 materials and nine layering configurations are evaluated for deep space travel in terms of whole-body effective dose equivalent (ED). Polymer and composite materials are also evaluated in terms of . It is clear that a “magic” material or layering configuration is not possible; however, polymers and composites should be used instead of metals if they can serve their primary purpose. Polyethylene is shown to be the best feasible material from this material sample. Thermal neutron absorbers 6Li and 10B do not have a significant effect on ED as homogeneous shields or in layering configurations. Alloying of materials such as aluminum for strengthening purposes does not increase ED. Tanking liquid hydrogen within aluminum does significantly reduce ED when compared to aluminum. Ultimately, a space vehicle is a system of systems and radiation protection must be one of them.