ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Su-Jin Jeon, Jae-Sang Lee, Do-Hyun Kim, Seok-Ho Hong, Chun-Sik Lee, Young-Wan Choi
Nuclear Technology | Volume 206 | Number 7 | July 2020 | Pages 1075-1085
Regular Technical Paper | doi.org/10.1080/00295450.2019.1697175
Articles are hosted by Taylor and Francis Online.
A homography method to correct position errors generated in the Compton imaging system using a resistive network is presented. The Compton imaging system is composed of a scatterer and an absorber in multichannel arrays for high resolution and can detect gamma rays emitted from radioisotopes. Resistive networks are often used in this system to efficiently reduce the number of channels. However, this can cause position errors, and the spatial resolution deteriorates according to the resistance value of the network, type of detector array, and characteristics of the preamplifier used. Therefore, before tracking the position of the source, it is necessary to correct the position errors of images obtained from the scatterer and absorber. Also, a new correction method should consider the characteristics of the readout circuits based on the resistive network. In this work, the position errors are corrected using homography, which is a coordinate transformation method. To verify the corrections using homography transformation, we modeled the current pulse generated from the detector and designed an automatic channel selection circuit to input each channel of the resistive network. From experiments, we first obtained the positions with distortions according to the setup of readout circuits and corrected these errors by applying the homography transformation method. Consequently, the distortions were significantly corrected, and the error rates of the positions compared with those of the ideal grid were greatly reduced by up to 0.36%.