ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Su-Jin Jeon, Jae-Sang Lee, Do-Hyun Kim, Seok-Ho Hong, Chun-Sik Lee, Young-Wan Choi
Nuclear Technology | Volume 206 | Number 7 | July 2020 | Pages 1075-1085
Regular Technical Paper | doi.org/10.1080/00295450.2019.1697175
Articles are hosted by Taylor and Francis Online.
A homography method to correct position errors generated in the Compton imaging system using a resistive network is presented. The Compton imaging system is composed of a scatterer and an absorber in multichannel arrays for high resolution and can detect gamma rays emitted from radioisotopes. Resistive networks are often used in this system to efficiently reduce the number of channels. However, this can cause position errors, and the spatial resolution deteriorates according to the resistance value of the network, type of detector array, and characteristics of the preamplifier used. Therefore, before tracking the position of the source, it is necessary to correct the position errors of images obtained from the scatterer and absorber. Also, a new correction method should consider the characteristics of the readout circuits based on the resistive network. In this work, the position errors are corrected using homography, which is a coordinate transformation method. To verify the corrections using homography transformation, we modeled the current pulse generated from the detector and designed an automatic channel selection circuit to input each channel of the resistive network. From experiments, we first obtained the positions with distortions according to the setup of readout circuits and corrected these errors by applying the homography transformation method. Consequently, the distortions were significantly corrected, and the error rates of the positions compared with those of the ideal grid were greatly reduced by up to 0.36%.