ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
J. W. Lane, J. M. Link, J. M. King, T. L. George, S. W. Claybrook
Nuclear Technology | Volume 206 | Number 7 | July 2020 | Pages 1019-1035
Regular Technical Paper | doi.org/10.1080/00295450.2019.1698896
Articles are hosted by Taylor and Francis Online.
GOTHIC™ has been used to simulate the Experimental Breeder Reactor–II (EBR-II) Shutdown Heat Removal Test 17 (SHRT-17) and Shutdown Heat Removal Test 45R (SHRT-45R), which correspond to protected and unprotected loss-of-flow events, respectively. GOTHIC is a versatile general-purpose, thermal-hydraulic software package that is a hybrid between traditional system thermal-hydraulic and computational fluid dynamics codes. It is a practical engineering tool that has been used for the design and licensing of existing plants, small modular reactors (SMRs), and next-generation plant designs. Historically, the software has been applied for containment analysis and operability assessments for light water reactors (LWRs), but the recent improvements included in GOTHIC 8.3(QA) allow for the software to be used to simulate advanced, non-LWR concepts currently being developed such as sodium, molten salt, lead, and gas–cooled designs.
It will be demonstrated in this paper that GOTHIC includes both the required attributes to model EBR-II and the appropriate physics to accurately simulate the steady-state operating conditions as well as SHRT-17 and SHRT-45R. The GOTHIC model of EBR-II was developed using only publicly available information. The nodalization was selected not only to capture the important phenomena but also to remain computationally efficient. The GOTHIC results show good agreement in both magnitude and trend with the experimental data. Differences are within the bounds of experimental uncertainty and required engineering assumptions applied in the model to fill in gaps in information, particularly for the various leakage paths that existed throughout the primary side of EBR-II, and were not well characterized during the tests.