ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Hangbok Choi, Robert W. Schleicher, John Bolin
Nuclear Technology | Volume 206 | Number 7 | July 2020 | Pages 993-1009
Regular Technical Paper | doi.org/10.1080/00295450.2019.1698936
Articles are hosted by Taylor and Francis Online.
Fuel performance analysis was conducted for the silicon carbide (SiC) composite clad uranium carbide (UC) fuel of a 500-MW(thermal) gas-cooled fast reactor, specifically the energy multiplier module (EM2) under normal operation. The analysis consists of two parts: Part I (this paper) includes a description of design bases and criteria, fuel element design specifications, and material properties and models, while Part II includes the fuel modeling approach, computer code, and fuel design evaluation. In Part I, the design bases and criteria describe the maximum allowed material temperature, cladding stress limit for structural integrity, and cladding strain limit for hermeticity. The material properties and models have been collected from open literature and recent measurements for the UC and SiC composites, respectively. As a result of reviewing legacy UC properties and models, it is recommended to measure the as-fabricated EM2 fuel properties with high priority to the thermal conductivity, swelling rate, and mechanical strength. For the SiC composite cladding, it is recommended to refine the creep rate for its temperature and time dependence. The stress-strain model also needs to be refined for its strain rate, irradiation, and temperature dependence.