ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Hangbok Choi, Robert W. Schleicher, John Bolin
Nuclear Technology | Volume 206 | Number 7 | July 2020 | Pages 993-1009
Regular Technical Paper | doi.org/10.1080/00295450.2019.1698936
Articles are hosted by Taylor and Francis Online.
Fuel performance analysis was conducted for the silicon carbide (SiC) composite clad uranium carbide (UC) fuel of a 500-MW(thermal) gas-cooled fast reactor, specifically the energy multiplier module (EM2) under normal operation. The analysis consists of two parts: Part I (this paper) includes a description of design bases and criteria, fuel element design specifications, and material properties and models, while Part II includes the fuel modeling approach, computer code, and fuel design evaluation. In Part I, the design bases and criteria describe the maximum allowed material temperature, cladding stress limit for structural integrity, and cladding strain limit for hermeticity. The material properties and models have been collected from open literature and recent measurements for the UC and SiC composites, respectively. As a result of reviewing legacy UC properties and models, it is recommended to measure the as-fabricated EM2 fuel properties with high priority to the thermal conductivity, swelling rate, and mechanical strength. For the SiC composite cladding, it is recommended to refine the creep rate for its temperature and time dependence. The stress-strain model also needs to be refined for its strain rate, irradiation, and temperature dependence.