ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
DOE’s latest fusion energy road map aims to bridge known gaps
The Department of Energy introduced a Fusion Science & Technology (S&T) Roadmap on October 16 as a national “Build–Innovate–Grow” strategy to develop and commercialize fusion energy by the mid-2030s by aligning public investment and private innovation. Hailed by Darío Gil, the DOE’s new undersecretary for science, as bringing “unprecedented coordination across America's fusion enterprise” and advancing President Trump’s January 2025 executive order, on “Unleashing American Energy,” the road map echoes plans issued by the DOE’s Office of Fusion Energy Sciences (FES) in 2023 and 2024, with a new emphasis on the convergence of AI and fusion.
The road map release coincided with other fusion energy events held this week in Washington, D.C., and beyond.
Hangbok Choi, Robert W. Schleicher, John Bolin
Nuclear Technology | Volume 206 | Number 7 | July 2020 | Pages 993-1009
Regular Technical Paper | doi.org/10.1080/00295450.2019.1698936
Articles are hosted by Taylor and Francis Online.
Fuel performance analysis was conducted for the silicon carbide (SiC) composite clad uranium carbide (UC) fuel of a 500-MW(thermal) gas-cooled fast reactor, specifically the energy multiplier module (EM2) under normal operation. The analysis consists of two parts: Part I (this paper) includes a description of design bases and criteria, fuel element design specifications, and material properties and models, while Part II includes the fuel modeling approach, computer code, and fuel design evaluation. In Part I, the design bases and criteria describe the maximum allowed material temperature, cladding stress limit for structural integrity, and cladding strain limit for hermeticity. The material properties and models have been collected from open literature and recent measurements for the UC and SiC composites, respectively. As a result of reviewing legacy UC properties and models, it is recommended to measure the as-fabricated EM2 fuel properties with high priority to the thermal conductivity, swelling rate, and mechanical strength. For the SiC composite cladding, it is recommended to refine the creep rate for its temperature and time dependence. The stress-strain model also needs to be refined for its strain rate, irradiation, and temperature dependence.