ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Quality is key: Investing in advanced nuclear research for tomorrow’s grid
As the energy sector faces mounting pressure to grow at an unprecedented pace while maintaining reliability and affordability, nuclear technology remains an essential component of the long-term solution. Southern Company stands out among U.S. utilities for its proactive role in shaping these next-generation systems—not just as a future customer, but as a hands-on innovator.
Tae-Hoon Lee, Spencer Menlove, Howard O. Menlove, Hee-Sung Shin, Ho-Dong Kim
Nuclear Technology | Volume 206 | Number 7 | July 2020 | Pages 984-992
Regular Technical Paper | doi.org/10.1080/00295450.2020.1743598
Articles are hosted by Taylor and Francis Online.
The transuranic (TRU) ingot is considered to be the most prominent target material of pyroprocessing in terms of safeguards since it contains almost all of the Pu of the feed spent fuel. Due to the high density, excessively high neutron emission rates, and high neutron multiplication of the U/TRU ingot, it is impractical to apply gamma-ray spectroscopy or neutron coincidence counting techniques to the quantification of the Pu content of the U/TRU ingot. Since the passive neutron albedo reactivity (PNAR) technique is known to be sensitive to the total fissile mass of target material and the uncertainty of its singles Cd ratio is independent of the accidental coincidence coming from the high neutron emission rate, the capability of the PNAR technique for the quantification of the Pu content of the U/TRU ingot has been investigated using the MCNPX code with a spent fuel library with 81 different cases of various kinds of initial enrichment, burnup, and cooling time. The MCNPX simulation results for the Cd ratio versus Pu content of the U/TRU ingot show the maximum error in the Pu mass between the linear fit and the real Pu content in the U/TRU ingot is 2.14% for 4.5 wt% initial enrichment cases. The results of this study show that the PNAR technique can be one possible method for the direct nondestructive assay for the Pu of the U/TRU ingot.