ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Amy Hall, Daniel A. Gum, Richard Ferrieri, John Brockman, James E. Bevins
Nuclear Technology | Volume 206 | Number 7 | July 2020 | Pages 962-976
Technical Paper – Special section on the 2019 ANS Student Conference | doi.org/10.1080/00295450.2020.1740561
Articles are hosted by Taylor and Francis Online.
The General Electric (GE®) PETtrace 860 cyclotron at the Missouri University Research Reactor (MURR) facility is used extensively for medical and research radioisotope production. However, no model exists of its performance, and the proton beam’s energy and spatial distribution are unmeasured. Here, an MCNP6 model was developed to improve upon the performance of the cyclotron target systems that are routinely utilized for research and medical radioisotope production. Since the cyclotron beam energy and profile have a significant impact on the efficiency and character of radioisotope production, the MURR cyclotron proton beam energy was measured using high-purity copper stacked foil activation to be 14.6 ± 0.2 MeV, a significant reduction from the stated 16.4 MeV. Phosphor plate imaging was also used to radiographically image the distribution of radioisotope production within the copper foils and characterize the beam spatial and intensity profile. Total target activity was quantified by trapping the 11C on a solid adsorbent and measuring the amount in an ion chamber. Effective target densities were calculated for irradiations conducted with beam currents between 5 and 40 μA. The measured beam and target characteristics were used to develop an MCNP6 model of 11C production. Through use of the model, it was determined that the targets were, at most, 41% efficient as a thick target design resulting in up to 11.80-MeV average protons impinging on the target walls leading to potential contamination from hot ion recoils.