In support of the restart of the Transient Reactor Test (TREAT) Facility at the Idaho National Laboratory, an analysis of a historic sodium loop experiment is performed. With the aging of the data and the beginning of a new campaign of transient testing, it is an ideal time to perform a modern analysis of a previously successful transient testing campaign. This work investigates many prior tests and ranks these tests for desirability of analysis using modern computational fluid dynamics (CFD) tools. Once the testing data were collected, necessary drawings were used to build a three-dimensional model of the test loop for CFD analysis. This geometry was then used to perform a multi-resolution analysis of the test loop. Three different resolution analyses were performed: a macroscale analysis detailing average flow characteristics in the test section using STAR-CCM+, a more refined analysis that investigated the thermal profile within the test section in more detail using STAR-CCM+, and a fine-mesh analysis that aims to lend credibility to the turbulence modeling performed in the lower-resolution analyses using Nek5000. The main goal was to show the feasibility of using modern computational tools for experiments performed at TREAT. With this analysis performed, a methodology has been outlined for future work to follow when analyzing the data from future TREAT tests. The more refined STAR-CCM+ analysis showed the best results when compared with data, showing that simulating the solid structures is an important feature of the analysis.