ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Haining Zhou, Volkan Seker, Thomas Downar
Nuclear Technology | Volume 206 | Number 6 | June 2020 | Pages 839-861
Technical Paper | doi.org/10.1080/00295450.2020.1746620
Articles are hosted by Taylor and Francis Online.
The paper presents a self-adaptive feature selection algorithm we developed for solving high-dimensional uncertainty quantification problems. The development of the algorithm was motivated and supported by the benchmarking of the Transient Reactor Test (TREAT) transient test 2857. The generalized polynomial chaos expansion scheme was adopted to decompose the response functions. Our algorithm was applied to select the dominant basis from the candidate polynomial basis in a self-adaptive manner by assigning weights to the polynomial basis and adjusting the weights using the least absolute shrinkage and selection operator regularization–estimated coefficients through iterations. The developed algorithm can recognize the significant basis terms in the polynomial expansion of the response functions and therefore build a sparse polynomial expansion using a limited number of samples. The algorithm was implemented and verified through three different TREAT modeling cases. The testing results demonstrated the general stability and prediction performance of our algorithm and provided useful information about the uncertainty mechanism of the TREAT transient test 2857.