ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
DOE’s latest fusion energy road map aims to bridge known gaps
The Department of Energy introduced a Fusion Science & Technology (S&T) Roadmap on October 16 as a national “Build–Innovate–Grow” strategy to develop and commercialize fusion energy by the mid-2030s by aligning public investment and private innovation. Hailed by Darío Gil, the DOE’s new undersecretary for science, as bringing “unprecedented coordination across America's fusion enterprise” and advancing President Trump’s January 2025 executive order, on “Unleashing American Energy,” the road map echoes plans issued by the DOE’s Office of Fusion Energy Sciences (FES) in 2023 and 2024, with a new emphasis on the convergence of AI and fusion.
The road map release coincided with other fusion energy events held this week in Washington, D.C., and beyond.
Volkan Seker, Haining Zhou, Thomas J. Downar
Nuclear Technology | Volume 206 | Number 6 | June 2020 | Pages 805-824
Technical Paper | doi.org/10.1080/00295450.2019.1703464
Articles are hosted by Taylor and Francis Online.
The Transient Reactor Test Facility (TREAT) was designed in the late 1950s to test nuclear fuels and materials under extreme conditions and has been recently restarted by the U.S. Department of Energy to provide the transient test capability to evaluate the performance of innovative nuclear fuels under accident conditions. Benchmark experiment data are required to support the operation of TREAT and to validate the computational analyses necessary to design and evaluate the experiments. Therefore, in this paper, benchmark problems based on the minimum critical (MC) core and M8 Power Calibration Experiment (M8CAL) core of TREAT were developed and analyzed using the Monte Carlo code Serpent. The eigenvalue, temperature coefficient, and flux distributions for both the MC core and the M8CAL cores were calculated and compared to the experimental data. All the calculated values compared well to the experimental data, and both problems were subsequently approved as International Reactor Physics Experiment Evaluation Project benchmarks.