ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Ming Wang, Jinxing Zheng, Yuntao Song, Xianhu Zeng, Ming Li, Wuquan Zhang, Pengyu Wang, Junsong Shen
Nuclear Technology | Volume 206 | Number 5 | May 2020 | Pages 779-790
Technical Paper | doi.org/10.1080/00295450.2019.1670011
Articles are hosted by Taylor and Francis Online.
The superconducting isochronous cyclotron SC200 for proton therapy is under development in Hefei, and the active scanning method has been selected as the beam delivery technology. To reduce energy loss and transverse scattering of the proton beam, a gas chamber in the pencil beam scanning (PBS) nozzle has been designed to shorten the length of the air segment. To determine whether using a helium filling gas or vacuum is the most suitable for the SC200 PBS nozzle, the beam size and the energy loss at the isocenter and the dose distribution in the water phantom are compared using the TOol for PArticle Simulation (TOPAS) code. The results show that using the helium filling gas resulted in scattering and energy loss of the proton beam compared with using vacuum, but these effects were minimal. Considering the disadvantages of the engineering problems of creating a vacuum chamber, helium was selected as the filling gas for the PBS nozzle chamber. Moreover, the following parameters were analyzed and optimized: gas pressure, gas purity, and film thickness of the chamber. When the helium pressure was below 1.1 atm and the air proportion was less than 5%, the beam size at the lowest energy of the proton beam at the isocenter was lower than 8 mm, meeting the clinical requirements.