ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Senate EPW Committee to hold Nieh nomination hearing
Nieh
The Senate Environment and Public Works Committee will hold a nomination hearing Wednesday for Ho Nieh, President Donald Trump’s nominee to serve as commission at the Nuclear Regulatory Commission.
Trump nominated Nieh on July 30 to serve as NRC commissioner the remainder of a term that will expire June 30, 2029, as Nuclear NewsWire previously reported.
Nieh has been vice president of regulatory affairs at Southern Nuclear since 2021, though since June 2024 he has been at the Institute of Nuclear Power Operations as a loaned executive.
A return to the NRC: If confirmed by the Senate, Nieh would be returning to the NRC after three previous stints totaling nearly 20 years.
Mohamed A. E. Abdel-Rahman, Mohamed A. E. M. Ali, Sayed A. El-Mongy
Nuclear Technology | Volume 206 | Number 5 | May 2020 | Pages 766-778
Technical Paper | doi.org/10.1080/00295450.2019.1697173
Articles are hosted by Taylor and Francis Online.
This research work aims to investigate the penetrability of electromagnetic gamma rays and fast neutrons and the static performance of newly developed concrete. To achieve this target, seven concrete samples of three different coarse aggregates—dolomite, hematite, iron slag (with five different densities, i.e., 3.23, 3.34, 3.42, 3.10, and 3.03 g/cm3, respectively) with dolomite used as the control specimen—have been synthesized and investigated to determine their mechanical and radiation penetration properties. The mechanical performances were evaluated in terms of tensile and compressive strength, slump measurements, and water permeability. X-ray fluorescence was carried out to determine the chemical composition of the synthesized materials. The materials’ mineralogical constituents were also determined by X-ray diffraction analysis. The radiation transmissioxn characteristics were also checked by using gamma-ray collimated beams of both 60Co and 238Pu/Be neutron source. A stilbene crystal organic scintillator coupled with a fast n/γ pulse shape discriminating spectrometer as well as an NaI(Tl) scintillator gamma spectrometer were used to measure the radiation penetrated through the concrete samples. The fast neutron macroscopic cross section and total gamma-ray linear attenuation were derived for the developed mixes. The results obtained show that iron slag concrete of density 3.10 ton/m3 has superior characteristics against the transmission of gamma rays and fast neutrons and distinguished resistance withstanding mechanical pressure and loads.