ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Jiankai Yu, Hyunsuk Lee, Hanjoo Kim, Peng Zhang, Deokjung Lee
Nuclear Technology | Volume 206 | Number 5 | May 2020 | Pages 728-742
Technical Paper | doi.org/10.1080/00295450.2019.1677107
Articles are hosted by Taylor and Francis Online.
The coupled neutronics–thermal-hydraulic simulation of the Benchmark for Evaluation and Validation of Reactor Simulations (BEAVRS) Cycle 1 depletion has been performed by the Monte Carlo–based multiphysics coupling code system MCS/CTF. MCS/CTF is a cyclewise pi-card iteration-based inner-coupling code system that couples the subchannel thermal-hydraulic code CTF as a thermal-hydraulic solver in the Monte Carlo neutron transport code MCS. MCS has been developed by the Computational Reactor Physics and Experiment Lab group at the Ulsan National Institute of Science and Technology for the full-core analysis of large-scale commercial light water reactors with high fidelity at the engineering level. With the high-fidelity performance of MCS, the quarter-core pinwise depletion simulation for the BEAVRS Cycle 1 benchmark has been conducted with thermal-hydraulic feedback including fuel temperature, coolant temperature, and coolant density. Moreover, the MCS internal one-dimensional thermal-hydraulic solver TH1D (MCS/TH1D) has been utilized as the reference. On one hand, the simulated results of the criticality boron concentration and axially integrated assemblywise detector signals were compared with measured data. On the other hand, the comparisons of power, fuel temperature, coolant temperature, and density are also presented in this paper.