ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Quality is key: Investing in advanced nuclear research for tomorrow’s grid
As the energy sector faces mounting pressure to grow at an unprecedented pace while maintaining reliability and affordability, nuclear technology remains an essential component of the long-term solution. Southern Company stands out among U.S. utilities for its proactive role in shaping these next-generation systems—not just as a future customer, but as a hands-on innovator.
Christopher Wallace, Curtis McEwan, Graeme West, William Aylward, Stephen McArthur
Nuclear Technology | Volume 206 | Number 5 | May 2020 | Pages 697-705
Technical Paper | doi.org/10.1080/00295450.2019.1697174
Articles are hosted by Taylor and Francis Online.
This paper summarizes a novel approach to improved localization of fuel defects by fusing existing data sources and methods within a neural network model to make accurate and quantifiable identification earlier than existing processes. The approach is demonstrated through application to a CANDU reactor and utilizes a small, manually labeled set of delayed neutron data augmented with neutronic power data to train a neural network to estimate the probability of a fuel channel containing a defect. Results demonstrate that the model is often capable of identifying likely defects earlier than existing methods and could support earlier decision making to enable a reduction in cost and time required to localize defects. The approach described has broader application to other reactor types given the general difficulty of detecting fuel defects via fission product measurement and the large quantities of ancillary parameters normally already recorded that can be leveraged using machine learning techniques.