ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Senate EPW Committee to hold Nieh nomination hearing
Nieh
The Senate Environment and Public Works Committee will hold a nomination hearing Wednesday for Ho Nieh, President Donald Trump’s nominee to serve as commission at the Nuclear Regulatory Commission.
Trump nominated Nieh on July 30 to serve as NRC commissioner the remainder of a term that will expire June 30, 2029, as Nuclear NewsWire previously reported.
Nieh has been vice president of regulatory affairs at Southern Nuclear since 2021, though since June 2024 he has been at the Institute of Nuclear Power Operations as a loaned executive.
A return to the NRC: If confirmed by the Senate, Nieh would be returning to the NRC after three previous stints totaling nearly 20 years.
Hunter Andrews, Supathorn Phongikaroon
Nuclear Technology | Volume 206 | Number 4 | April 2020 | Pages 651-661
Technical Note | doi.org/10.1080/00295450.2019.1670009
Articles are hosted by Taylor and Francis Online.
Cyclic voltammetry (CV) was used to study SmCl3 at concentrations of 0.42 to 8.99 wt% in molten eutectic LiCl-KCl (44.2:55.8 wt%) at 773 K. For each sample, CV was repeated at different electrode surface areas to measure the peak current density. By analyzing the measured peak current density and concentration relationship with the Randles-Sevcik equation, the Sm(III) diffusivity for each sample was calculated. These diffusion coefficients ranged from 0.934 × 10−5 to 1.572 × 10−5 cm2‧s−1, showing no noticeable trend with a change in concentration. The samples were then divided into two groups of five. The first group was used to develop a calibration model for concentration prediction, while the second group was used to test and validate the model. The first model was based on the relationship between current density and concentration. This model had a very low limit of detection of 0.14 wt% and very low error as evaluated by the root-mean-square error of calibration of 0.108 wt%. The second model was a multivariate approach utilizing the current density values and laser-induced breakdown spectroscopy (LIBS) intensities as regressors; however, the introduction of LIBS data showed an increase in the model’s prediction error when compared to the first model. The electrode withdrawal method proved to be a preferable option due to a substantial increase in precision.