ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Zhong Chen, Zi Jia Zhao, Zhongliang Lv, Yanyun Ma
Nuclear Technology | Volume 206 | Number 4 | April 2020 | Pages 637-650
Technical Note | doi.org/10.1080/00295450.2019.1653151
Articles are hosted by Taylor and Francis Online.
A water-flooded-core accident is a serious potential accident for high-temperature gas-cooled reactors (HTGRs). In this technical note, based on two different water-flooded-core scenarios, preliminary neutronics analysis was performed on a typical HTGR. Preliminary temperature-effect analysis is carried out as well. It is found that the neutron-slowing ability is the key for the effective multiplication factor of the HTGR core. More importantly, when the water-flooded-core accident occurs, the HTGR might return back to supercritical with the core temperature decreasing even if it is safely shut down at high operation temperature.