ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
G. Cao, S. Herrmann, S. Li, R. Hoover, J. King, B. Serrano-Rodriguez, K. Marsden
Nuclear Technology | Volume 206 | Number 4 | April 2020 | Pages 577-586
Technical Paper | doi.org/10.1080/00295450.2019.1666601
Articles are hosted by Taylor and Francis Online.
LiCl-Li2O salt is a widely used electrolyte for the electrochemical reduction of spent oxide (mainly uranium oxide) fuels, and the Li2O concentration is usually controlled at about 1.41 mol % for optimum operation and corrosion mitigation of the platinum anode material. Due to the small difference in reduction potential between UO2 and Li2O, some Li2O will be reduced during the oxide reduction process, leading to a Li2O deviation from the desired 1.41 mol %. Monitoring of the Li2O concentration is desired for proper control of the electrochemical oxide reduction process. In this paper, a Li2O sensor based on a yttria stabilized zirconia (YSZ) membrane was developed and tested to evaluate the feasibility of using the Li2O sensor to monitor the Li2O concentrations in the range of 0.57 to 1.69 mol % Li2O in LiCl-Li2O salt systems—one without dissolved Li metal and another with 0.24 mol % dissolved Li metal. The experimental results show that the open circuit potential of the Li2O sensor logarithmically responded to the concentration of Li2O in LiCl-Li2O salts with or without the presence of Li metal, suggesting that YSZ appears promising for real-time monitoring of the Li2O concentration in LiCl-Li2O salt for an oxide reduction process. The Li2O sensor developed herein is based on a potentiometry measurement that requires a stable, reliable reference electrode (RE), particularly for long-term Li2O concentration monitoring. To this end, a novel Ag/AgCl RE that is contained in a high-density MgO tube with a closed end was developed and exhibited stable electrode potential, chemical compatibility with LiCl-Li2O, and good mechanical strength. The performance of the newly developed Ag/AgCl RE was demonstrated in Li2O monitoring by comparing it with a traditional Ni/NiO RE.