ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
Thiago D. Roberto, Celso M. F. Lapa, Antonio C. M. Alvim
Nuclear Technology | Volume 206 | Number 4 | April 2020 | Pages 527-543
Technical Paper | doi.org/10.1080/00295450.2019.1666603
Articles are hosted by Taylor and Francis Online.
Reactor cavity cooling systems (RCCSs) ensure the physical integrity of the containment structures in a high-temperature gas-cooled test reactor (HTR-10) and a high-temperature gas-cooled pebble-bed module reactor (HTR-PM). HTR-10 is a graphite-moderated and helium-cooled pebble-bed reactor prototype designed to demonstrate the technical feasibility and safety of the pebble-bed reactor design concept under normal and accident conditions. This prototype served as a proof of concept for the HTR-PM that shares several design similarities with the HTR-10, including a reactor cavity that requires cooling owing to the high core outlet temperature. The RCCS conceived in the design of both the reactors increases the inherent safety of the system by dissipating heat through passive heat removal processes. This paper proposes an RCCS model for system-scale analysis. The conventional scale method is adopted to determine the conditions necessary for complete similarity between two RCCSs in the steady-state flow regime. In addition, a scaling evaluation between the RCCSs of both the HTR-10 (model) and HTR-PM (prototype) is performed using the proposed RCCS model based on data from two benchmark problems: pressurized and depressurized loss of forced cooling. This evaluation shows that the RCCSs of the HTR-10 (model) and HTR-PM (prototype) show similarity to a specific operational condition in each of the problems analyzed.