ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Quality is key: Investing in advanced nuclear research for tomorrow’s grid
As the energy sector faces mounting pressure to grow at an unprecedented pace while maintaining reliability and affordability, nuclear technology remains an essential component of the long-term solution. Southern Company stands out among U.S. utilities for its proactive role in shaping these next-generation systems—not just as a future customer, but as a hands-on innovator.
Yu Huang, Gaofeng Lu, Youshi Zeng, Nan Qian, Xinxin Chu, Guanghua Wang, Shengwei Wu, Wei Liu
Nuclear Technology | Volume 206 | Number 3 | March 2020 | Pages 458-466
Technical Paper | doi.org/10.1080/00295450.2019.1633156
Articles are hosted by Taylor and Francis Online.
Since the Pd/Ag membrane has a permselectivity for hydrogen isotopes, a permeator with a Pd/Ag membrane is developed to separate tritium from inert gases. First, a permeation experiment of pure H2 was carried out to determine the pressure exponent and the rate-determining step of permeation. It was found that the diffusion of H2 through the Pd membrane was the rate-determining step. Then, the separation of H2 from H2-Ar gas mixtures was carried out on the permeator to simulate the separation of tritium. Moreover, numerical simulation was utilized to study the concentration distribution of H2 in the permeator. The permeability of the Pd/Ag membrane was determined comparing the simulation results with the experimental data. The permeation flux of H2 through the Pd/Ag membrane is affected by permeability, the volume fraction of Ar in the feed gas, and the flow rate of the feed gas. In the condition of high permeability and Ar volume fraction, a phenomenon known as concentration polarization occurred. It can strongly affect the permeation of H2. Based on these results, an optimized design of the Pd/Ag permeator can be made to effectively separate tritium from other gases.