ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The Nuclear Company forms partnership with University of South Carolina
The Nuclear Company, which in April opened its primary engineering and construction office in Columbia, S.C., announced a partnership with the University of South Carolina’s Molinaroli College of Engineering and Computing, whereby the company will invest up to $5 million in the college over five years. USC is to match the private investment with funds from federal grants, industry partners, and other donors.
Yu Huang, Gaofeng Lu, Youshi Zeng, Nan Qian, Xinxin Chu, Guanghua Wang, Shengwei Wu, Wei Liu
Nuclear Technology | Volume 206 | Number 3 | March 2020 | Pages 458-466
Technical Paper | doi.org/10.1080/00295450.2019.1633156
Articles are hosted by Taylor and Francis Online.
Since the Pd/Ag membrane has a permselectivity for hydrogen isotopes, a permeator with a Pd/Ag membrane is developed to separate tritium from inert gases. First, a permeation experiment of pure H2 was carried out to determine the pressure exponent and the rate-determining step of permeation. It was found that the diffusion of H2 through the Pd membrane was the rate-determining step. Then, the separation of H2 from H2-Ar gas mixtures was carried out on the permeator to simulate the separation of tritium. Moreover, numerical simulation was utilized to study the concentration distribution of H2 in the permeator. The permeability of the Pd/Ag membrane was determined comparing the simulation results with the experimental data. The permeation flux of H2 through the Pd/Ag membrane is affected by permeability, the volume fraction of Ar in the feed gas, and the flow rate of the feed gas. In the condition of high permeability and Ar volume fraction, a phenomenon known as concentration polarization occurred. It can strongly affect the permeation of H2. Based on these results, an optimized design of the Pd/Ag permeator can be made to effectively separate tritium from other gases.