ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Bechtel-led SIMCO awarded three-year WIPP contract extension
The Department of Energy has issued a three-year contract extension to Salado Isolation Mining Contractors (SIMCO), a single-purpose entity comprising Bechtel National and Los Alamos Technical Associates as a teaming contractor, for the continued management and operations of the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-generated transuranic waste in southeastern New Mexico.
Yu Huang, Gaofeng Lu, Youshi Zeng, Nan Qian, Xinxin Chu, Guanghua Wang, Shengwei Wu, Wei Liu
Nuclear Technology | Volume 206 | Number 3 | March 2020 | Pages 458-466
Technical Paper | doi.org/10.1080/00295450.2019.1633156
Articles are hosted by Taylor and Francis Online.
Since the Pd/Ag membrane has a permselectivity for hydrogen isotopes, a permeator with a Pd/Ag membrane is developed to separate tritium from inert gases. First, a permeation experiment of pure H2 was carried out to determine the pressure exponent and the rate-determining step of permeation. It was found that the diffusion of H2 through the Pd membrane was the rate-determining step. Then, the separation of H2 from H2-Ar gas mixtures was carried out on the permeator to simulate the separation of tritium. Moreover, numerical simulation was utilized to study the concentration distribution of H2 in the permeator. The permeability of the Pd/Ag membrane was determined comparing the simulation results with the experimental data. The permeation flux of H2 through the Pd/Ag membrane is affected by permeability, the volume fraction of Ar in the feed gas, and the flow rate of the feed gas. In the condition of high permeability and Ar volume fraction, a phenomenon known as concentration polarization occurred. It can strongly affect the permeation of H2. Based on these results, an optimized design of the Pd/Ag permeator can be made to effectively separate tritium from other gases.