ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
G. L. Beausoleil, II, G. L. Povirk, B. J. Curnutt
Nuclear Technology | Volume 206 | Number 3 | March 2020 | Pages 444-457
Technical Paper | doi.org/10.1080/00295450.2019.1631052
Articles are hosted by Taylor and Francis Online.
The Advanced Test Reactor (ATR) has been used successfully for the testing of fast reactor fuel for nearly two decades. These successes have been in spite of numerous challenges for testing fast reactor fuel in the ATR (a thermal spectrum reactor), but the solutions to those challenges have resulted in excessively long irradiation times (~10 years) for high-burnup targets as well as experiments that are highly sensitive to fabrication tolerances and eccentricities. This paper presents a solution to the problems of extended irradiation times and fabrication sensitivities. Thermal and neutronic analyses were performed to show that a reduced-diameter fuel pin with an equivalent linear heat generation rate can provide a prototypic thermal profile (peak centerline and inner clad temperature) along with a near-prototypic power profile within the ATR thermal spectrum. This allows the experiment to reach a high burnup in an expeditious timeframe compared to traditional ATR fast fuel irradiations. In addition, problems with fabrication sensitivities were addressed by introducing a double-encapsulated experiment that pushes the high heat flux helium gap farther away from the fuel pin. Fuel pin position eccentricities are also mitigated by using a large sodium bond between the pin and capsule fuel. The advantages and potential pitfalls of this revised design are discussed, including the effect of length scales on fuel system behavior.