ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Te-Chuan Wang, Min Lee
Nuclear Technology | Volume 206 | Number 3 | March 2020 | Pages 414-427
Technical Paper | doi.org/10.1080/00295450.2019.1653152
Articles are hosted by Taylor and Francis Online.
MAAP5 is an integral severe accident analysis program that simulates the responses of a light water reactor power plant during a severe accident. This program has been used extensively for probabilistic safety assessments, verification and validation of mitigation actions specified in severe accident management guidelines, and source term quantification. In this study, the uncertainty of in-vessel hydrogen generation predicted by the MAAP5 code was quantified. The surrogate plant that was analyzed is the Lungmen Nuclear Power Station of the Taiwan Power Company. The plant employs an advanced boiling water reactor. We performed sensitivity studies to identify the important model parameters that affect the target output parameters. A range and distribution were assigned to these parameters on the basis of experimental results and expert judgment. The number of input parameters in the analysis was 27. Multiple MAAP5 calculations were performed with an input combination generated from Latin hypercube sampling. The calculation results were analyzed parametrically and nonparametrically to determine the 95th percentile with the 95% confidence level value of the amount of in-vessel hydrogen generation. The Pearson correlation coefficient was used to determine the effect of the model parameters on the target output parameters. The analysis results provide guidance for code applications. The only parameters that pass the threshold of 0.362 for hydrogen generation in the core are FCO and TCLMAX. For hydrogen generation in the lower plenum, FOXBJ is the only input parameter that passes the threshold.