ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The Nuclear Company forms partnership with University of South Carolina
The Nuclear Company, which in April opened its primary engineering and construction office in Columbia, S.C., announced a partnership with the University of South Carolina’s Molinaroli College of Engineering and Computing, whereby the company will invest up to $5 million in the college over five years. USC is to match the private investment with funds from federal grants, industry partners, and other donors.
Seong-Wan Hong, Sang Ho Kim, Rae-Joon Park
Nuclear Technology | Volume 206 | Number 3 | March 2020 | Pages 401-413
Technical Paper | doi.org/10.1080/00295450.2019.1654816
Articles are hosted by Taylor and Francis Online.
In the postulated severe accidents of nuclear power plants, the interaction mode of the molten corium with water happens differently depending on the height of the water level in the reactor cavity. The interaction of the molten corium with the partially filled water in the reactor cavity has been extensively studied. The molten corium in this case was released into the water after free falling to some distance. Meanwhile, some advanced reactors have adapted the in-vessel corium retention concept by cooling the reactor vessel’s outside wall. If a reactor vessel failure happens in this case, the molten corium in the reactor vessel is injected directly into the water without any free fall. Triggered steam explosion experiments were carried out to compare the explosion behavior conditions of the partially flooded cavity and ex-vessel cooling. It was found that the jet breakup process before the explosion appeared differently between the two experiments. These behaviors contributed to the differences in the maximum dynamic pressure and load that express the explosion’s strength. The explosion’s strength under the partially flooded cavity condition was about two times stronger than that under ex-vessel cooling. Accordingly, it is believed that the steam explosions under conditions of ex-vessel cooling are of less concern than the partially flooded cavity condition.