ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Dillon R. Shaver, Nate Salpeter, Ananias Tomboulides, Prasad Vegendla, Adrian Tentner, W. David Pointer, Elia Merzari
Nuclear Technology | Volume 206 | Number 2 | February 2020 | Pages 375-387
Technical Paper | doi.org/10.1080/00295450.2019.1664199
Articles are hosted by Taylor and Francis Online.
To enable the design of a light water small modular reactor, the boiling flow inside a helical coil steam generator has been simulated with the two-fluid model in Nek-2P. Nek-2P is the multiphase branch of the spectral element code Nek5000. Details of the implementation of the two-fluid model and the included closure models are discussed. The presented closure models include interactions for momentum, heat, and mass transfer between phases. Models for the drag, lift, and turbulent dispersion forces are included. The complete model is fully consistent in the limits of both phasic volume fractions approaching zero and is able to simulate flows of dispersed vapor, continuous liquid, dispersed liquid, continuous vapor, or any combination thereof. The closure models and their implementation in Nek-2P have been validated by comparing to experimental data for a boiling flow, demonstrating excellent agreement. Results from the simulation of the helical coil indicate strong phasic separation driven by the effects of buoyancy and inertia. Significant differences were observed in the results compared to simulations performed using Star-CCM+, although these differences were somewhat expected.