ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Mingfu He, Youho Lee
Nuclear Technology | Volume 206 | Number 2 | February 2020 | Pages 358-374
Technical Paper | doi.org/10.1080/00295450.2019.1626177
Articles are hosted by Taylor and Francis Online.
Considering the highly nonlinear behavior and phenomenological complexity of critical heat flux (CHF), this study proposes a novel method to predict CHF on microstructure surface using machine learning technologies. An extensive literature survey was conducted to collect experimental data on microstructure surfaces. Data on horizontal silicon specimens of cylindrical pillars with square arrangements were selected for both training and testing various machine learning methods, including ν-support vector machine, back-propagation neural network, radial basis function neural network, general regression neural network, and deep belief network (DBN). Among the tested machine learning methods, DBN is shown to provide the best accuracy for CHF prediction. The obtained parametric CHF behavior of DBN with respect to pillar diameter, spacing, and height agrees with the physical understanding of CHF on microstructure surfaces. The presented approach is expected to support the design optimization of microstructure for CHF maximization.