ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
White House taps Douglas Weaver for NRC role
The Trump White House has nominated seasoned nuclear regulatory expert Douglas Weaver for a commissioner seat on the Nuclear Regulatory Commission. If confirmed, Weaver would fill the seat vacated by NRC commissioner Annie Caputo, who resigned in July.
Weaver’s nomination was sent earlier today to the Senate Environment and Public Works Committee. If confirmed, he would finish the remainder of Caputo’s term, which expires June 30, 2026.
Mingfu He, Youho Lee
Nuclear Technology | Volume 206 | Number 2 | February 2020 | Pages 358-374
Technical Paper | doi.org/10.1080/00295450.2019.1626177
Articles are hosted by Taylor and Francis Online.
Considering the highly nonlinear behavior and phenomenological complexity of critical heat flux (CHF), this study proposes a novel method to predict CHF on microstructure surface using machine learning technologies. An extensive literature survey was conducted to collect experimental data on microstructure surfaces. Data on horizontal silicon specimens of cylindrical pillars with square arrangements were selected for both training and testing various machine learning methods, including ν-support vector machine, back-propagation neural network, radial basis function neural network, general regression neural network, and deep belief network (DBN). Among the tested machine learning methods, DBN is shown to provide the best accuracy for CHF prediction. The obtained parametric CHF behavior of DBN with respect to pillar diameter, spacing, and height agrees with the physical understanding of CHF on microstructure surfaces. The presented approach is expected to support the design optimization of microstructure for CHF maximization.