ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
University of Nebraska–Lincoln: Home of ANS’s newest student section
Following official confirmation in June at the American Nuclear Society’s 2025 Annual Conference, the University of Nebraska–Lincoln has kicked off its first year as the newest ANS student section.
Soon K. Lee, Maolong Liu, Nicholas R. Brown, Kurt A. Terrani, Youho Lee
Nuclear Technology | Volume 206 | Number 2 | February 2020 | Pages 339-346
Technical Paper | doi.org/10.1080/00295450.2019.1670010
Articles are hosted by Taylor and Francis Online.
Steady-state internal flow boiling experiments were conducted on various materials, including accident tolerant fuel cladding material Fe–12Cr–6Al (C26M2) alloy, Zircaloy, and metal-based materials, at atmospheric pressure (84 kPa), 10°C inlet subcooling, and 200 kg/m2‧s mass flow entering the test tubes until critical heat flux (CHF) was reached. The clad thickness effects on flow boiling CHF were evaluated showing a negative relation between CHF and clad thickness up to 0.711 mm. An approach was established to mechanistically understand the measured CHF differences among the tested materials using thermal effusivity, activity, diffusivity, and surface thermal economy. No clear relations were observed within the range of thermal properties of the tested materials. Compared to past CHF data for a mass flux of 300 kg/m2‧s, the CHF data for 200 kg/m2‧s showed increased relative differences among materials. This result implies that higher mass flux may further decrease apparent material sensitivity to CHF.