ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Soon K. Lee, Maolong Liu, Nicholas R. Brown, Kurt A. Terrani, Youho Lee
Nuclear Technology | Volume 206 | Number 2 | February 2020 | Pages 339-346
Technical Paper | doi.org/10.1080/00295450.2019.1670010
Articles are hosted by Taylor and Francis Online.
Steady-state internal flow boiling experiments were conducted on various materials, including accident tolerant fuel cladding material Fe–12Cr–6Al (C26M2) alloy, Zircaloy, and metal-based materials, at atmospheric pressure (84 kPa), 10°C inlet subcooling, and 200 kg/m2‧s mass flow entering the test tubes until critical heat flux (CHF) was reached. The clad thickness effects on flow boiling CHF were evaluated showing a negative relation between CHF and clad thickness up to 0.711 mm. An approach was established to mechanistically understand the measured CHF differences among the tested materials using thermal effusivity, activity, diffusivity, and surface thermal economy. No clear relations were observed within the range of thermal properties of the tested materials. Compared to past CHF data for a mass flux of 300 kg/m2‧s, the CHF data for 200 kg/m2‧s showed increased relative differences among materials. This result implies that higher mass flux may further decrease apparent material sensitivity to CHF.