ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Quality is key: Investing in advanced nuclear research for tomorrow’s grid
As the energy sector faces mounting pressure to grow at an unprecedented pace while maintaining reliability and affordability, nuclear technology remains an essential component of the long-term solution. Southern Company stands out among U.S. utilities for its proactive role in shaping these next-generation systems—not just as a future customer, but as a hands-on innovator.
Sunming Qin, Benedikt Krohn, Victor Petrov, Annalisa Manera
Nuclear Technology | Volume 206 | Number 2 | February 2020 | Pages 307-321
Technical Paper | doi.org/10.1080/00295450.2019.1591155
Articles are hosted by Taylor and Francis Online.
Nonintrusive optical methods of flow visualization, like particle image velocity (PIV) and planar laser-induced fluorescence (PLIF), have been widely applied to obtain instantaneous velocity and concentration fields with high spatial and temporal resolutions. When there are density variances involved in the flow, however, the optical measurements become challenging. To prevent the laser sheet which is used to illuminate the flow from getting deflected due to the changes of densities, it is essential to match the refractive indices for the solutions used in the experiments. A methodology based on the mixing behavior of a ternary-component system is applied in this work and an index-matched density ratio of 3.16% has been obtained. To form a nonconfined round free jet, an experimental facility was designed with a jet nozzle diameter of 2 mm located at the bottom of a cubic tank with 30-cm side length. The jet flow is established by a servo-engine-driven piston to eliminate possible fluctuations introduced by the motor. A high-fidelity synchronized PIV/PLIF system was utilized to measure the velocity and concentration fields in the self-similar regions for the jet flow with density differences as well as for the reference cases in uniform environments. Results are analyzed and compared in terms of turbulent statistics. Important for validations of computational fluid dynamics simulations, turbulent eddy viscosity as well as turbulent diffusivity are computed according to the Boussinesq hypothesis and the standard gradient-diffusion hypothesis. Scalar transport has been characterized for the jet self-similar region compared with previous literature using pipe-shaped jet nozzle in terms of the decay constants, jet spreading rates, and virtual origins.