ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Mustafa Alper Yildiz, Haomin Yuan, Elia Merzari, Yassin Hassan
Nuclear Technology | Volume 206 | Number 2 | February 2020 | Pages 296-306
Technical Paper | doi.org/10.1080/00295450.2019.1626176
Articles are hosted by Taylor and Francis Online.
The helical coil steam generator (HCSG) is a specific type of shell-and-tube heat exchanger known for having a higher heat transfer coefficient than many other designs. For this reason, they are considered in small modular reactor and high temperature reactor designs. Investigation of flow behavior in HCSGs is important for better design. In this paper we present our study for modeling the coolant flow in the primary side of the HCSG. We used Nek5000, an open source, high-order spectral element computational fluid dynamics code developed in Argonne National Laboratory. Nek5000 accepts only hexahedral mesh, which makes the meshing process for the complicated HCSG geometry very challenging. A tetrahedral-to-hexahedral meshing strategy was applied to bypass the geometric complexities. In this study large eddy simulation (LES) was performed at the Reynolds number of 9000 based on the inlet velocity and the tube diameter. The employed subgrid-scale model for LES relies on explicit filtering. First- and second-order statistics were compared to available experimental data. Overall velocity and turbulent kinetic energy showed good agreement with particle image velocimetry data.