ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
T. Q. Hua, S. J. Lee, J. Liao, A. Moisseytsev, P. Ferroni, A. Karahan, C. Y. Paik, A. M. Tentner, T. Sofu
Nuclear Technology | Volume 206 | Number 2 | February 2020 | Pages 206-217
Technical Paper | doi.org/10.1080/00295450.2019.1598715
Articles are hosted by Taylor and Francis Online.
Fauske & Associates, LLC (FAI), Argonne National Laboratory (ANL), and Westinghouse Electric Company are collaborating within the program “Development of an Integrated Mechanistic Source Term Assessment Capability for Lead- and Sodium-Cooled Fast Reactors.” This program, partially funded by the U.S. Department of Energy through the Gateway for Accelerated Innovation in Nuclear initiative, aims at developing a computational framework for predicting radionuclide release from a broad spectrum of accidents that can be postulated to occur at liquid metal cooled reactor (LMR) facilities. Specifically, the program couples the transient and severe accident analysis capability of the SAS4A/SASSYS-1 code developed by ANL with the radionuclide transport analysis capability of the Facility Flow, Aerosol, Thermal, and Explosion (FATE) code developed by FAI. The testing of both the individual codes and of the coupled system is performed on a generic lead cooled fast reactor (LFR) design that is intended to capture the key differences between the LFR and the sodium fast reactor (SFR), around which the SAS4A/SASSYS-1 code has historically been developed and from which the coupled code inherits some features requiring modification before application to LFR systems. By means of this approach, a computational framework applicable to both LFR and SFR systems will be obtained that will assist LMR developers in performing a realistic, scenario-dependent mechanistic source term (MST) assessment expected not only to strengthen their safety case but also to support easier siting and claims on reduced emergency planning zone requirements. This paper discusses the work being performed to adapt the SAS4A/SASSYS-1 and FATE codes to LFR technology; the code coupling method implemented; and some of the results of the LFR test case, with the latter aimed at demonstrating the progress made toward the development of the MST analysis capability that is ultimately targeted.