ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
T. Q. Hua, S. J. Lee, J. Liao, A. Moisseytsev, P. Ferroni, A. Karahan, C. Y. Paik, A. M. Tentner, T. Sofu
Nuclear Technology | Volume 206 | Number 2 | February 2020 | Pages 206-217
Technical Paper | doi.org/10.1080/00295450.2019.1598715
Articles are hosted by Taylor and Francis Online.
Fauske & Associates, LLC (FAI), Argonne National Laboratory (ANL), and Westinghouse Electric Company are collaborating within the program “Development of an Integrated Mechanistic Source Term Assessment Capability for Lead- and Sodium-Cooled Fast Reactors.” This program, partially funded by the U.S. Department of Energy through the Gateway for Accelerated Innovation in Nuclear initiative, aims at developing a computational framework for predicting radionuclide release from a broad spectrum of accidents that can be postulated to occur at liquid metal cooled reactor (LMR) facilities. Specifically, the program couples the transient and severe accident analysis capability of the SAS4A/SASSYS-1 code developed by ANL with the radionuclide transport analysis capability of the Facility Flow, Aerosol, Thermal, and Explosion (FATE) code developed by FAI. The testing of both the individual codes and of the coupled system is performed on a generic lead cooled fast reactor (LFR) design that is intended to capture the key differences between the LFR and the sodium fast reactor (SFR), around which the SAS4A/SASSYS-1 code has historically been developed and from which the coupled code inherits some features requiring modification before application to LFR systems. By means of this approach, a computational framework applicable to both LFR and SFR systems will be obtained that will assist LMR developers in performing a realistic, scenario-dependent mechanistic source term (MST) assessment expected not only to strengthen their safety case but also to support easier siting and claims on reduced emergency planning zone requirements. This paper discusses the work being performed to adapt the SAS4A/SASSYS-1 and FATE codes to LFR technology; the code coupling method implemented; and some of the results of the LFR test case, with the latter aimed at demonstrating the progress made toward the development of the MST analysis capability that is ultimately targeted.