ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Iztok Tiselj, Cedric Flageul, Jure Oder
Nuclear Technology | Volume 206 | Number 2 | February 2020 | Pages 164-178
Critical Review | doi.org/10.1080/00295450.2019.1614381
Articles are hosted by Taylor and Francis Online.
The critical review discusses the most accurate methods for description of turbulent flows: the computationally very expensive direct numerical simulation (DNS) and slightly less accurate and slightly less expensive large eddy simulation (LES) methods. Both methods have found their way into nuclear thermal hydraulics as tools for studies of the fundamental mechanisms of turbulence and turbulent heat transfer. In the first section of this critical review, both methods are briefly introduced in parallel with the basic properties of the turbulent flows. The focus is on the DNS method, the so-called quasi-DNS approach, and the coarsest turbulence modeling approach discussed in this work, which is still on the very small-scale, wall-resolved LES. Other, coarser turbulence modeling approaches (such as wall-modeled LES, Reynolds Averaged Navier-Stokes (RANS)/LES hybrids, or RANS) are beyond the scope of the present work. Section II answers the question: “How do the DNS and LES methods work?” A short discussion of the computational requirements, numerical approaches, and computational tools is included. Section III is about the interpretation of the DNS and LES results and statistical uncertainties. Sections IV and V give some examples of the DNS and wall-resolved LES results relevant for nuclear thermal hydraulics. The last section lists the conclusions and some of the challenges that might be tackled with the most accurate techniques like DNS and LES.