ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Katrien Van Tichelen, Graham Kennedy, Fabio Mirelli, Alessandro Marino, Antonio Toti, Davide Rozzia, Edoardo Cascioli, Steven Keijers, Philippe Planquart
Nuclear Technology | Volume 206 | Number 2 | February 2020 | Pages 150-163
Critical Review | doi.org/10.1080/00295450.2019.1614803
Articles are hosted by Taylor and Francis Online.
The Belgian Nuclear Research Centre (SCK•CEN) is at the forefront of heavy liquid-metal (HLM) nuclear technology worldwide with the development of the Multi-purpose hYbrid Research Reactor for High-tech Applications (MYRRHA) accelerator-driven system. MYRRHA is a flexible fast-spectrum pool-type research reactor cooled by lead bismuth eutectic (LBE) and has been identified as the European Technology Pilot Plant for the lead-cooled fast reactor. Given the innovative nature of MYRRHA, the project is currently going through a prelicensing phase. The MYRRHA research and development (R&D) program is driven by this prelicensing process and aims to fill the existing gaps in knowledge with respect to LBE chemistry, material behavior, fuel behavior, instrumentation, and HLM thermal hydraulics. In this critical review we present selected topics from the R&D program on HLM thermal hydraulics that are essential for the design, engineering, and safety analysis of MYRRHA and other HLM-cooled reactors. The topics addressed include turbulent heat transfer in HLM, fuel assembly thermal hydraulics and flow-induced vibrations, control rod hydrodynamics, primary heat exchanger pool and integral system thermal hydraulics, sloshing, and multiphysics modeling.