ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
Yeni Li, Elisa Bertino, Hany S. Abdel-Khalik
Nuclear Technology | Volume 206 | Number 1 | January 2020 | Pages 82-93
Technical Paper | doi.org/10.1080/00295450.2019.1626170
Articles are hosted by Taylor and Francis Online.
Model-based defenses have been promoted over the past decade as essential defenses against intrusion and data deception attacks into the control network used to digitally regulate the operation of critical industrial systems such as nuclear reactors. The idea is that physics-based models could differentiate between genuine, i.e., unaltered by adversaries, and malicious network engineering data, e.g., flowrates, temperatures, etc. Machine learning techniques have also been proposed to further improve the differentiating power of model-based defenses by constantly monitoring the engineering data for any possible deviations that are not consistent with the physics. While this is a sound premise, critical systems, such as nuclear reactors, chemical plants, oil and gas plants, etc., share a common disadvantage: almost any information about them can be obtained by determined adversaries, such as state-sponsored attackers. Thus, one must question whether model-based defenses would be resilient under these extreme adversarial conditions. This paper represents a first step toward answering this question. Specifically, we introduce self-learning techniques, including both pure data-driven, e.g., deep neural networks, and physics-based techniques able to predict dynamic behavior for a nuclear reactor model. The results indicate that if attackers are technically capable, they can learn very accurate models for reactor behavior, which raises concerns about the effectiveness of model-based defenses.