ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Yeni Li, Elisa Bertino, Hany S. Abdel-Khalik
Nuclear Technology | Volume 206 | Number 1 | January 2020 | Pages 82-93
Technical Paper | doi.org/10.1080/00295450.2019.1626170
Articles are hosted by Taylor and Francis Online.
Model-based defenses have been promoted over the past decade as essential defenses against intrusion and data deception attacks into the control network used to digitally regulate the operation of critical industrial systems such as nuclear reactors. The idea is that physics-based models could differentiate between genuine, i.e., unaltered by adversaries, and malicious network engineering data, e.g., flowrates, temperatures, etc. Machine learning techniques have also been proposed to further improve the differentiating power of model-based defenses by constantly monitoring the engineering data for any possible deviations that are not consistent with the physics. While this is a sound premise, critical systems, such as nuclear reactors, chemical plants, oil and gas plants, etc., share a common disadvantage: almost any information about them can be obtained by determined adversaries, such as state-sponsored attackers. Thus, one must question whether model-based defenses would be resilient under these extreme adversarial conditions. This paper represents a first step toward answering this question. Specifically, we introduce self-learning techniques, including both pure data-driven, e.g., deep neural networks, and physics-based techniques able to predict dynamic behavior for a nuclear reactor model. The results indicate that if attackers are technically capable, they can learn very accurate models for reactor behavior, which raises concerns about the effectiveness of model-based defenses.