ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Katy Huff on the impact of loosening radiation regulations
Katy Huff, former assistant secretary of nuclear energy at the Department of Energy, recently wrote an op-ed that was published in Scientific American.
In the piece, Huff, who is an ANS member and an associate professor in the Department of Nuclear, Plasma, and Radiological Engineering at the University of Illinois–Urbana-Champaign, argues that weakening Nuclear Regulatory Commission radiation regulations without new research-based evidence will fail to speed up nuclear energy development and could have negative consequences.
Yeni Li, Elisa Bertino, Hany S. Abdel-Khalik
Nuclear Technology | Volume 206 | Number 1 | January 2020 | Pages 82-93
Technical Paper | doi.org/10.1080/00295450.2019.1626170
Articles are hosted by Taylor and Francis Online.
Model-based defenses have been promoted over the past decade as essential defenses against intrusion and data deception attacks into the control network used to digitally regulate the operation of critical industrial systems such as nuclear reactors. The idea is that physics-based models could differentiate between genuine, i.e., unaltered by adversaries, and malicious network engineering data, e.g., flowrates, temperatures, etc. Machine learning techniques have also been proposed to further improve the differentiating power of model-based defenses by constantly monitoring the engineering data for any possible deviations that are not consistent with the physics. While this is a sound premise, critical systems, such as nuclear reactors, chemical plants, oil and gas plants, etc., share a common disadvantage: almost any information about them can be obtained by determined adversaries, such as state-sponsored attackers. Thus, one must question whether model-based defenses would be resilient under these extreme adversarial conditions. This paper represents a first step toward answering this question. Specifically, we introduce self-learning techniques, including both pure data-driven, e.g., deep neural networks, and physics-based techniques able to predict dynamic behavior for a nuclear reactor model. The results indicate that if attackers are technically capable, they can learn very accurate models for reactor behavior, which raises concerns about the effectiveness of model-based defenses.