ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Miles F. Beaux, II, Douglas R. Vodnik, Reuben J. Peterson, Bryan L. Bennett, Kevin M. Hubbard, Brian M. Patterson, Jeffrey D. Goettee, James D. Jurney, Graham M. King, Alice I. Smith, Eric L. Tegtmeier, Erik P. Luther, Venkateswara R. Dasari, (DV Rao), David J. Devlin, Igor O. Usov
Nuclear Technology | Volume 206 | Number 1 | January 2020 | Pages 23-31
Technical Paper | doi.org/10.1080/00295450.2019.1618683
Articles are hosted by Taylor and Francis Online.
The coating of nuclear fuel kernels with pyrolytic carbon (PyC) is a well-understood practice dating back over half a century. In spite of decades of studies related to these coatings, no study has yet investigated the effect of the PyC deposition coating process on the kernels themselves. In this study, the composition and crystallographic phase of kernel materials were observed to change after exposure to the thermal and chemical environment of the PyC coating process. Specifically, the coating process increased the fraction of high carbon content phase within carbide microsphere kernels, with W2C containing microspheres driven toward WC, and UC containing microspheres driven toward UC2. Oxide microspheres consisted of a mixture of two crystalline phases. The monoclinic phase within yttria-stabilized zirconia microspheres was eliminated by the coating process resulting in a purely tetragonal phase. Hafnium oxide microspheres were more stable showing no detectable change in composition or crystal structure after coating.