ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The Nuclear Company forms partnership with University of South Carolina
The Nuclear Company, which in April opened its primary engineering and construction office in Columbia, S.C., announced a partnership with the University of South Carolina’s Molinaroli College of Engineering and Computing, whereby the company will invest up to $5 million in the college over five years. USC is to match the private investment with funds from federal grants, industry partners, and other donors.
Miles F. Beaux, II, Douglas R. Vodnik, Reuben J. Peterson, Bryan L. Bennett, Kevin M. Hubbard, Brian M. Patterson, Jeffrey D. Goettee, James D. Jurney, Graham M. King, Alice I. Smith, Eric L. Tegtmeier, Erik P. Luther, Venkateswara R. Dasari, (DV Rao), David J. Devlin, Igor O. Usov
Nuclear Technology | Volume 206 | Number 1 | January 2020 | Pages 23-31
Technical Paper | doi.org/10.1080/00295450.2019.1618683
Articles are hosted by Taylor and Francis Online.
The coating of nuclear fuel kernels with pyrolytic carbon (PyC) is a well-understood practice dating back over half a century. In spite of decades of studies related to these coatings, no study has yet investigated the effect of the PyC deposition coating process on the kernels themselves. In this study, the composition and crystallographic phase of kernel materials were observed to change after exposure to the thermal and chemical environment of the PyC coating process. Specifically, the coating process increased the fraction of high carbon content phase within carbide microsphere kernels, with W2C containing microspheres driven toward WC, and UC containing microspheres driven toward UC2. Oxide microspheres consisted of a mixture of two crystalline phases. The monoclinic phase within yttria-stabilized zirconia microspheres was eliminated by the coating process resulting in a purely tetragonal phase. Hafnium oxide microspheres were more stable showing no detectable change in composition or crystal structure after coating.