ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
A. Labarile, C. Mesado, R. Miró, G. Verdú
Nuclear Technology | Volume 205 | Number 12 | December 2019 | Pages 1675-1684
Technical Paper | doi.org/10.1080/00295450.2019.1631051
Articles are hosted by Taylor and Francis Online.
One of the challenges of studying the neutronics of reactors is to generate reliable parameterized libraries that contain information to simulate the core in all possible operational and transient conditions. These libraries must include tables of cross sections and other neutronic and kinetic parameters and are obtained by simulating all the segments in a transport code. At the lattice level, one can use branch calculations to change “instantaneously” the feedback parameters as a function of burnup. When using random sampling for the lattice calculations, one can obtain statistical information about the output parameters and use it in a core simulation to characterize the accuracy of data estimating uncertainties when simulating a heterogeneous system at different scales of detail.
This work presents the methodology to generate NEMTAB libraries from data obtained in the SCALE code system to be used in PARCS simulations. The code TXT2NTAB is used to reorder the cross-section tables in NEMTAB format and generate another NEMTAB of standard deviation. With these libraries, the authors perform a steady-state calculation for a light water reactor to propagate several uncertainties at the core level. The methodology allows obtaining statistical information of the most important output parameters: multiplication factor keff, axial power peak Pz, and axial peak node Nz.