ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Nathan W. Porter, Vincent A. Mousseau, Maria N. Avramova
Nuclear Technology | Volume 205 | Number 12 | December 2019 | Pages 1607-1617
Technical Paper | doi.org/10.1080/00295450.2018.1548221
Articles are hosted by Taylor and Francis Online.
This paper introduces a framework for model selection that includes parameter estimation, uncertainty propagation, and quantified validation. The framework is applied to single-phase turbulent friction modeling in CTF, which is a thermal-hydraulic code for nuclear engineering applications. The friction model is chosen because it is well understood and easy to separate from other physics, which allows focus to be on the model selection framework instead of on the particulars of the chosen model. Two different empirical models are compared: the McAdams Correlation and the Simplified McAdams Correlation. The parameter estimation is performed by calibrating each of the friction models to experimental data using the Delayed Rejection Adaptive Metropolis algorithm, which is a Markov Chain Monte Carlo method. State point uncertainties are also considered, which are determined based on measurement errors from the experiment. The input parameter distributions are propagated through CTF using a statistical method with samples. A variety of validation metrics is used to quantify which empirical model is more accurate. It is shown that model form uncertainty can be quantified using validation once all other sources of uncertainty—numerical, sampling, experimental, and parameter—have been quantitatively addressed. When multiple models are available, the one that has the smallest model form error can be selected. Though the framework is applied to a simple example here, the same process can quantify the model form uncertainty of more complicated physics, multiple models, and simulation tools in other fields. Therefore, this work is a demonstration of best practices for future assessments of model form uncertainty.