ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Nathan W. Porter, Vincent A. Mousseau, Maria N. Avramova
Nuclear Technology | Volume 205 | Number 12 | December 2019 | Pages 1607-1617
Technical Paper | doi.org/10.1080/00295450.2018.1548221
Articles are hosted by Taylor and Francis Online.
This paper introduces a framework for model selection that includes parameter estimation, uncertainty propagation, and quantified validation. The framework is applied to single-phase turbulent friction modeling in CTF, which is a thermal-hydraulic code for nuclear engineering applications. The friction model is chosen because it is well understood and easy to separate from other physics, which allows focus to be on the model selection framework instead of on the particulars of the chosen model. Two different empirical models are compared: the McAdams Correlation and the Simplified McAdams Correlation. The parameter estimation is performed by calibrating each of the friction models to experimental data using the Delayed Rejection Adaptive Metropolis algorithm, which is a Markov Chain Monte Carlo method. State point uncertainties are also considered, which are determined based on measurement errors from the experiment. The input parameter distributions are propagated through CTF using a statistical method with samples. A variety of validation metrics is used to quantify which empirical model is more accurate. It is shown that model form uncertainty can be quantified using validation once all other sources of uncertainty—numerical, sampling, experimental, and parameter—have been quantitatively addressed. When multiple models are available, the one that has the smallest model form error can be selected. Though the framework is applied to a simple example here, the same process can quantify the model form uncertainty of more complicated physics, multiple models, and simulation tools in other fields. Therefore, this work is a demonstration of best practices for future assessments of model form uncertainty.