ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
From renaissance to reality: Infrastructure for a global nuclear fuel cycle
Dale Klein
This article was adapted from the author’s speech during a plenary at the 21st International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 2025), San Antonio, Texas, July 2025.
There has been a lot of discussion lately about reforming the Nuclear Regulatory Commission. But I want to be clear: When it comes to nuclear safety and security, there is no place for partisan politics. I support efforts to streamline regulatory processes, but the independence and integrity of the NRC must remain sacrosanct. If we are serious about expanding nuclear power and reclaiming our global leadership in nuclear technology, having a strong independent regulator is fundamental.
Right now, we’re on the edge of a global nuclear resurgence driven by rising demand from data centers, growing concerns about energy security, and the need to decarbonize industry.
Bertrand Iooss, Amandine Marrel
Nuclear Technology | Volume 205 | Number 12 | December 2019 | Pages 1588-1606
Technical Paper | doi.org/10.1080/00295450.2019.1573617
Articles are hosted by Taylor and Francis Online.
In the framework of the estimation of safety margins in nuclear accident analysis, a quantitative assessment of the uncertainties tainting the results of computer simulations is essential. Accurate uncertainty propagation (estimation of high probabilities or quantiles) and quantitative sensitivity analysis may call for several thousand code simulations. Complex computer codes, as the ones used in thermal-hydraulic accident scenario simulations, are often too CPU-time expensive to be directly used to perform these studies. A solution consists in replacing the computer model by a CPU-inexpensive mathematical function, called a metamodel, built from a reduced number of code simulations. However, in case of high-dimensional experiments (with typically several tens of inputs), the metamodel building process remains difficult. To face this limitation, we propose a methodology which combines several advanced statistical tools: initial space-filling design, screening to identify the noninfluential inputs, and Gaussian process (Gp) metamodel building with the group of influential inputs as explanatory variables. The residual effect of the group of noninfluential inputs is captured by another Gp metamodel. Then, the resulting joint Gp metamodel is used to accurately estimate Sobol’ sensitivity indices and high quantiles (here 95% quantile). The efficiency of the methodology to deal with a large number of inputs and reduce the calculation budget is illustrated on a thermal-hydraulic calculation case simulating with the CATHARE2 code a loss-of-coolant accident scenario in a pressurized water reactor. A predictive Gp metamodel is built with only a few hundred code simulations which allows the calculation of the Sobol’ sensitivity indices. This Gp also provides a more accurate estimation of the 95% quantile and associated confidence interval than the empirical approach, at equal calculation budget. Moreover, on this test case, the joint Gp approach outperforms the simple Gp.