ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Browns Ferry’s reactors receive subsequent license renewals
The operating licenses for the three boiling water reactors at Browns Ferry nuclear power plant, in Athens, Ala., have each been renewed by the Nuclear Regulatory Commission for an additional 20 years. The reactors, operated by the Tennessee Valley Authority, are now licensed to operate until December 2053 for Unit 1, June 2054 for Unit 2, and July 2056 for Unit 3.
A. Petruzzi
Nuclear Technology | Volume 205 | Number 12 | December 2019 | Pages 1554-1566
Technical Paper | doi.org/10.1080/00295450.2019.1632092
Articles are hosted by Taylor and Francis Online.
Predictive Modeling Methodology constitutes an innovative approach to perform uncertainty analysis (UA) that reduces the subjective and user-defined ways to manage experimental data and derive uncertainty of input parameters that characterize the Propagation of Input Uncertainties (PIU) and/or Propagation of Output Accuracies (POA) methods.
The Code with the capability of Adjoint Sensitivity and Uncertainty AnaLysis by Internal Data ADjustment and assimilation (CASUALIDAD) method can be developed as a fully deterministic method based on advanced mathematical tools to internally perform in the thermal-hydraulic system code the sensitivity analysis (SA) and the UA. The method is based upon powerful mathematical tools to perform the SA and upon the Data Adjustment and Assimilation methodology by which experimental observations are combined with code predictions and their respective errors through the application of the Bayes theorem and of the Principle of Maximum Likelihood to provide an improved estimate of the system state and of the associated uncertainty considering all input parameters that affect any prediction.
The methodology has been structured in two main steps. The first step generates the database of improved estimations (IEs) starting from the available set of experimental data and related qualified calculations. The second step deals with the use of the selected (from the obtained database) set of IEs for the uncertainty evaluation of the predicted nuclear power plant transient scenario.
The proposed methodology clearly interrelates in a consistent and robust framework the code validation issue with the evaluation of the uncertainty of code responses passing through the quantification of input uncertainty parameters of code models, thus constituting a step forward with respect to the subjectivity of the current methods based on PIU and/or POA.