ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Tomasz Skorek
Nuclear Technology | Volume 205 | Number 12 | December 2019 | Pages 1540-1553
Technical Paper | doi.org/10.1080/00295450.2019.1580532
Articles are hosted by Taylor and Francis Online.
The input uncertainties propagation methods are the most frequently applied statistical methods in uncertainty analyses. Among them, particularly popular are the methods based on Wilks’ formula. Numerous studies on uncertainty analyses show that the identification and quantification of input uncertainties is a major problem with uncertainty analyses. Among input uncertainties evaluation, the identification and quantification of physical model uncertainties in thermal-hydraulic codes appear to be particularly difficult.
This paper deals with this problem by proposing inherent model uncertainties quantification by code developers in the frame of code development and validation. The introduction of the extended code validation would not only contribute to potential uncertainty analyses, solving to a large degree the problem of model uncertainties quantification, but also contribute to code validation, and as a consequence, improve the safety issues. A not-negligible factor is also better management of the resources. Instead of uncertainty quantification repeatedly performed by each user, the quantification could be performed once and, in addition, by experts having the required know-how.
Introducing this new standard in code validation would require additional effort from the code developers but integral quantification of the model uncertainties would be profitable also for code development. In fact, by code development, in particular if the model is own development of the team, such an accuracy (or uncertainty) evaluation is usually performed. The additional effort, in this case, would be to describe the present information in the form of probability distribution functions or at least in the form of ranges.