ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Spent fuel transfer project completed at INL
Work crews at Idaho National Laboratory have transferred 40 spent nuclear fuel canisters into long-term storage vaults, the Department of Energy’s Office of Environmental Management has reported.
Dumitru Serghiuta, John Tholammakkil
Nuclear Technology | Volume 205 | Number 12 | December 2019 | Pages 1513-1528
Critical Review | doi.org/10.1080/00295450.2019.1570751
Articles are hosted by Taylor and Francis Online.
This paper reviews the attributes and challenges of applying the functional failure concept and the use of Best-Estimate Plus Uncertainty methods in evaluating protective systems in the risk space. As an illustrative example, the paper uses the case of the effectiveness of CANada Deuterium Uranium (CANDU) reactor shutdown systems. A risk-informed formulation is first introduced for estimation of a reasonable limit for functional failure probability using the Swiss Cheese model. In the real application, there are several challenges in realistically estimating probabilities of exceeding a prescribed design or regulatory limit. Key challenges discussed in this critical review include the use of complex, computationally intensive predictive models; modeling completeness; assumptions about input distributions; validation; separation of uncertainties; and selection of statistical model and algorithms. The use of hybrid deterministic-probabilistic methods may address these challenges to a certain extent.