ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Quality is key: Investing in advanced nuclear research for tomorrow’s grid
As the energy sector faces mounting pressure to grow at an unprecedented pace while maintaining reliability and affordability, nuclear technology remains an essential component of the long-term solution. Southern Company stands out among U.S. utilities for its proactive role in shaping these next-generation systems—not just as a future customer, but as a hands-on innovator.
Jaakko Leppänen
Nuclear Technology | Volume 205 | Number 11 | November 2019 | Pages 1416-1432
Technical Paper | doi.org/10.1080/00295450.2019.1603710
Articles are hosted by Taylor and Francis Online.
A deterministic importance solver has been implemented as an internal subroutine in the Serpent 2 Monte Carlo code for the purpose of producing weight-window meshes for variance reduction. The routine solves the adjoint transport problem using the response matrix method with coupling coefficients obtained from a conventional forward Monte Carlo simulation. The methodology can be applied to photon and neutron external source problems, and the solver supports multiple energy groups and several mesh types. Importances can be generated with respect to multiple responses, and an iterative global variance reduction sequence enables distributing the transported particle population evenly throughout the geometry. This paper describes the methodology applied in the response matrix solver and presents a verification for the generated importance functions through simple demonstrations. A practical example involving a photon shielding problem is included for performance evaluation.