ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Jaakko Leppänen
Nuclear Technology | Volume 205 | Number 11 | November 2019 | Pages 1416-1432
Technical Paper | doi.org/10.1080/00295450.2019.1603710
Articles are hosted by Taylor and Francis Online.
A deterministic importance solver has been implemented as an internal subroutine in the Serpent 2 Monte Carlo code for the purpose of producing weight-window meshes for variance reduction. The routine solves the adjoint transport problem using the response matrix method with coupling coefficients obtained from a conventional forward Monte Carlo simulation. The methodology can be applied to photon and neutron external source problems, and the solver supports multiple energy groups and several mesh types. Importances can be generated with respect to multiple responses, and an iterative global variance reduction sequence enables distributing the transported particle population evenly throughout the geometry. This paper describes the methodology applied in the response matrix solver and presents a verification for the generated importance functions through simple demonstrations. A practical example involving a photon shielding problem is included for performance evaluation.