ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
Chad L. Pope, Colby B. Jensen, Douglas M. Gerstner, James R. Parry
Nuclear Technology | Volume 205 | Number 10 | October 2019 | Pages 1378-1386
Technical Note | doi.org/10.1080/00295450.2019.1599615
Articles are hosted by Taylor and Francis Online.
The Transient Reactor Test (TREAT) facility was designed and built in the late 1950s. The air-cooled reactor design incorporates fuel composed of highly enriched uranium dispersed in graphite with a 10 000:1 carbon-to-uranium atom ratio to provide a very fast-acting highly negative temperature coefficient of reactivity. The reactor utilizes a forced-air-cooling system for decay heat removal, with a primary function of reducing the time at temperature (oxidation) of the reactor fuel cladding. The simple design with lack of a cooling system pressure boundary provides relatively easy access for instrumentation and experiments. The large thermal mass of the reactor and the simple design allow for high-power transients approaching 18 000 MW in an inherently safe manner. The simple design has allowed TREAT to operate successfully for 35 years before being placed in standby in 1994 and subsequently restarted in 2017 after more than 20 years of standby to continue the transient fuel testing mission in the United States. This technical note addresses the reactor design and experiment capabilities.