ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Chad L. Pope, Colby B. Jensen, Douglas M. Gerstner, James R. Parry
Nuclear Technology | Volume 205 | Number 10 | October 2019 | Pages 1378-1386
Technical Note | doi.org/10.1080/00295450.2019.1599615
Articles are hosted by Taylor and Francis Online.
The Transient Reactor Test (TREAT) facility was designed and built in the late 1950s. The air-cooled reactor design incorporates fuel composed of highly enriched uranium dispersed in graphite with a 10 000:1 carbon-to-uranium atom ratio to provide a very fast-acting highly negative temperature coefficient of reactivity. The reactor utilizes a forced-air-cooling system for decay heat removal, with a primary function of reducing the time at temperature (oxidation) of the reactor fuel cladding. The simple design with lack of a cooling system pressure boundary provides relatively easy access for instrumentation and experiments. The large thermal mass of the reactor and the simple design allow for high-power transients approaching 18 000 MW in an inherently safe manner. The simple design has allowed TREAT to operate successfully for 35 years before being placed in standby in 1994 and subsequently restarted in 2017 after more than 20 years of standby to continue the transient fuel testing mission in the United States. This technical note addresses the reactor design and experiment capabilities.